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It is shown that if the eigenvalues of the TLS matrix C66 a r e  all positive, then the trace of S must lie 
within an open interval, which is effectively determined. Further Scheringer's equation for the estimate 
of the trace of S is shown to have in this interval exactly one root which is simultaneously the point of 
the maximum of the determinant of the TLS matrix C6~. 

1. Introduction* 

Schomaker & Trueblood (1968) showed that the 
external vibrations of almost rigid molecules can be 
described by three tensors T, L and S. However, trace 
(S) cannot be determined from diffraction data since 
only the differences ~ J S t - S j  enter into the calculation. 
The condition, trace (S)=0, was chosen by them for 
practical purposes. But this condition does not remove 
the indeterminacy of trace (S). 

Scheringer (1973 - hereafter SCHE) pointed out 
that we should know trace (S), at least approximately, 
for a lattice-dynamical interpretation of the TLS 
tensor. He found that the limits for trace (S) follow 
from the fact that the matrix C66 must be positive 
definite. He gave also an estimate for the trace (S) 
originating in the lattice dynamics of molecular 
crystals. We quote his equation (4.15): 

{C~61(K)}14.Af-{C~61(K)}25-[-{C~61(K)}36=O. (1.1) 

The principal purpose of this paper is to show that 
an estimate of the trace (S), for which matrix C66(K) is 
positive definite, follows uniquely from (-1.1). This 
supports the lattice-dynamical interpretation of the 
TLS tensors indicated by SCHE. Therefore we shall 
try to answer the following questions: 

(i) What is the shape of the set M of all K for which 
the TLS matrix C66(K) is positive definite? 

(ii) How many roots has (1.1) in the set M? 
Mathematical analysis of these questions will also 

show an effective way of finding the limits and an 
estimate of trace (S). It is obvious that the limits for 
trace (S) found by mathematical analysis are not 
narrower than those previously established [SCHE 
(4.5)] but about the same. 

2. Mathematical analysis* 

Theorem 1 : The set M is an open interval. 
Proof: The matrix C is positive definite (see SCHE 
Appendix) and therefore at least one K must exist for 
which the matrix C66(K) is also positive definite. Thus 
M is not void. Let KI~M. According to Lemma 1 of 
Appendix I the principal minor determinants A ,  A2, 

* Symbols are summarized in Appendix III. 

A3, A4(KI) ,As(KI) ,A6(K1) are positive. However, these 
determinants are continuous functions of K, the 

A1,A2,A3 (2.1) 

being constants and the 

Zg(K),As(K),Z6(K) (2.2) 

being polynomials of second, fourth and sixth orders 
respectively. Consequently, a region for this point K1 
may be found where the determinants (2.1) and (2.2) 
are positive and therefore the matrix C66(K ) positive 
definite. This means that M is an open set. 

Further let K1, K2eM. According to SCHE (Appen- 
dix) the matrix C66(K1)+ C66(K2) is positive definite and 
hence the matrix [C66(K1)+ C66(K2)]/2=C66[(K 1 +/(2)/2] 
is positive definite as well. Thus (1(1 +K2)/2~M. This 
means that M must be an open interval and Theorem 
1 is proved. 
Theorem 2: The roots of equations (E4), (Es) and (E6) 
fulfil the inequalities: 

4Kl ~ SK2 <_6Ka <6K4 <_SKa <_4K2 (2.3) 

and the set M is the interval: 

(6K3,6K4). (2.4) 

Proof: The determinants (2.1) being independent of K 
and positive (see Lemma 1 of Appendix I), only the 
polynomials (2.2) will be investigated. For the matrix 
C66(K ) to be positive definite it is necessary that (2.2) 
be simultaneously positive. This condition implies the 
form (2.4) of the set M. The behaviour of the poly- 
nomials (2.2) for K ~ + c~ is governed by the coef- 
ficients of the highest-order terms. Writing: 

1 

A4(K) =-[T22T33-(T23)2]K2-t- ~ a,K n 
n = 0  

3 
As(K) = T33K 4 -a t- ~ bnK" 

n=O 

5 
z 6 ( g  ) = --  g 6 + ~ Ca K n  , 

n=O 

we see that the expression T22Ta3-(T23) 2, being a 
principle minor determinant of the matrix C66(K) 
independent of K, is positive in view of Note 1 of 
Appendix I. For the same reason Taa> 0. Thus: 



V. P E T R i C E K  695 

K--> + co ~ A,(K)  -+ - c o  (2.5a) 

K - ~  + oo ~ As(K) ---> +oo  (2.5b) 

K--+ __ co :~ A6(K ) --9- - o o .  (2.5c) 

From Theorem 1, Lemma 1 of Appendix I and (2.5a) 
it follows that the equation (E4) has two roots 4/£1 < 4/(2 
and: 

Ke(4K,4K2) ~ A4(K)>0 (2.6) 

K¢(4K1,4K2) =~ /14(K) <0 . 

Since the numbers (2.1) are positive and /14(4K1) = 
/14(4K2)=0 the rank of matrix C44(K) at the points 
4K1,4K 2 is equal to 3. According to Lemma 2 of Ap- 
pendix I, C44(K ) has at these two points three positive 
eigenvalues and one equal to zero. Applying the Lemma 
of Appendix II we get: 

As(4K1)_ 0 As(4K2)_< 0 .  (2.7) 

The roots of equation (Es) fulfil then the following 
inequalities [see Theorem 1, Lemma 1 of Appendix I 
and (2.5b), (2.6), (2.7)]: 

SK 1 < 4K 1 _< SK z < SK 3 < 4K z <_ 5K 4 . (2.8) 

Further we shall confine ourselves to the case when all 
roots o f  equation (Es) are simple. Though the re- 
maining cases are more complicated, they give the 
same results.I" Under our assumption we have: 

Ke(-c~,SK~) =:- As(K)>0 

Ke(SK~,SK2) ~ As(K)<0 
Ke(SKz, SK3) ~ As(K) > 0 

Ke¢/C3,~K4) ~/1~(K)<0 

Ke(SK4, + c<)) ~/Is(K) > 0. (2.9) 

From (2.6), (2.8) and (2.9) it follows: 

/14(K)>0 &/15(K)>0  ~Ke(SKz,  SK3). (2.10) 

The numbers (2.1) are positive and A4(SK1) <_ 0, 
&(SK2) >_ 0, As(SK~) = As(SK2) = 0. The following four 
cases have been considered separately. 

(i) A4(SK1) < 0 &/14(SK2) > 0 

Here the rank of matrix Css(K) at the points SK~, SK z 
is equal to 4. Lemma 2 of Appendix I implies that the 
matrix Css(SK~) has three positive, one negative and one 
zero eigenvalues and the matrix Css(SK2) four positive 
and one zero eigenvalues. Applying the Lemma of 
Appendix II we get: 

/16(SK1) > 0 /16(5K2) < 0 .  (2.1 la) 

(ii) /14(SK~) = 0  & A4(SK2) > 0 

At the point SK the situation is similar to that of the 
previous case. However, at 5K1 the sequence/11,/12,/13, 
A4(K), As(K),/16(K) cannot be used for determining the 
signs of eigenvalues, since the rank of Css(SK~) is equal 

to four (see Note 2 of Appendix I). The last statement 
follows from the assumption that the roots of (Es) are 
simple. Then d[As(K)]/dK is different from zero for 
K =  5K~. But d[/15(K)]/dK is a sum of minors of order 
four, so that at least one of them must be different from 
zero and the rank of C55(5K~) is four as stated above. 
Thus the signs of eigenvalues may be determined from 
the continuity of the eigenvalues of C55(K) as functions 
of K and the behaviour of/14(K) and As(K) in the 
neighbourhood of 5K~. We find that C55(5K~) has three 
positive, one negative and one zero eigenvalues and 
get in view of the lemma of Appendix II again the in- 
equalities (2.11 a). 

(iii) /14(5K~)<0 &/14(5K2)=0 

The discussion is quite analogous to the previous one. 

(iv) /14(5K1)=0 &/14(5K2)=0 

The eventuality cannot occur since the roots of (Es) 
are simple and (2.8) holds. Thus the inequalities (2.1 la) 
are true in all cases. Performing a similar analysis at 
the points 5K 3,5K4 we obtain: 

A6(SK3) _< 0 /16(5K4) >_ 0 .  (2.1 lb) 

The roots of equation (E6) fulfil [see Theorem 1, Lem- 
ma 1 of Appendix I and (2.5c), (2.10), (2.11)]: 

6K 1 < 5g 1 <6K 2 < SK 2 _6K 3 <6/(4< 5K 3 

~6K5~5K4<_6K 6 . (2.12) 
Further: 

K6(6K3,6K4) ~ A6(K)>0 .  (2.13) 

From (2.10), (2.12) and (2.13) it follows: 

/14(K) > 0 & As(K) > 0 & A6(K) > 0 
KE(%,%). (2.14) 

This means that the set M is the interval (2.4). The 
inequalities (2.3) follow from (2.8) and (2.12) and the 
proof of Theorem 2 is completed. 
Theorem 3 : (1.1) has in the set M exactly one solution, 
say K0, fulfilling the maximum condition: 

A6(K0) = Max A6(K ) . 
K~M 

Proof: Writing (1.1) in the form: 

A14(K)+Azs(K)+A36(K) = 0  (2.15) 
/16(K) 

and having in mind that: 

d 
dK [/16(K)]=2[Au(K)+Azs(K)+Aa6(K)] (2.16) 

[since C66(K ) is symmetric], we can see that (1.1) is 
equivalent to the following condition in the set M" 

d 
dK [A6(K)] = 0 .  (2.17) 

Considering the behaviour of the function A6(K ) [see 
(2.12), (2.13)] we get Theorem 3. 

* See Appendix III. t The detailed discussion is available from the author. 
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3. Conclusions 

The above theorems enable us to put limits on trace 
(S) [trace (S)= 3I(] and to estimate its value in the fol- 
lowing simple way. 

We find first the coefficients of polynomials A4(K), 
As(K), A6(K). The knowledge of these makes it possible 
to determine subsequently such roots of (E4), (/?5) and 
(E6) which fulfil inequalities (2.3). In this way we get 
the limits for trace (S). The next step is to find the 
derivative d[A6(K)]/dK and to determine its root lying 
in the interval M. In this way we get an estimate for 
trace (S). 

This method presents a direct and simpler approach 
of determining the limits of and the estimate for trace (S) 
than the numerical methods described earlier (SCHE). 

The author thanks Dr B. Gruber CSc. and Dr A. 
Linek CSc. for stimulating discussion and valuable 
comments. 

APPENDIX I 

For the convenience of the reader we quote two well- 
known propositions concerning matrix theory [see e.g. 
Gantmacher (1953)]. Supposing A is a symmetric 
matrix of order n we denote: 

D1 = An, D2 
/AlIAlz .  . . A , , \  

= det ~A12A22] " " "' D. = det 

n . °  • /1 " 

Lemma 1: The matrix A is positive definite (i.e. its 
eigenvalues are positive) if and only if: 

Dt > 0, D2 > 0 , . . . ,  Dn > 0 .  

Note 1 : It follows that all principal minor determinants 
of a positive definite matrix are positive. 
Lemma 2: Let r be the rank of matrix A, let D,-~ 0 for 
k =  1 , . . . , r .  Then the number of zero eigenvalues is 
equal to n - r .  The number of the negative eigenvalues 
is equal to the number of changes of signs in the se- 
quence 1, D r , . . . ,  D r. 
Note 2: The sequence 1, D~, Dz, • •., D, cannot be used 
to determine the number of negative eigenvalues if, in 
particular, D,=O. 

APPENDIX II 

Lemma: Let A be a symmetric square matrix of order 
n which has one zero eigenvalue and an odd (or even) 
number of negative eigenvalues. Let the matrix B 
originate from A in the following way: 

t 
AiiAi2" • "AinBi t 
A12A22.. . Az,,Bz. . 

B =  

\ B 1 B z  • . B n B n + a /  • 

Then det(B)> 0 [or det (B)< 0, respectively]. 
Proof: Certainly an orthogonal matrix R may be found 
in such a way that: 

RTAR = A .  

Where A is a diagonal matrix with 2 , , = 0  and R T 
denotes the transpose of R. Let D be the row matrix 
(Bx,B2,...,B,,) and O the row matrix consisting of n 
zero elements. Taking the auxiliary orthogonal matrix 
Q: 

o=/R 
\ O  1 ] 

we get 

QTBQ= [ A i RTDr\ ~ det (QrBQ)=de t  (B)= 

o h  / Bn+l / = -J'n222 " "2"-1"-1[(DR)"]2 

which makes the Lemma clear. 

APPENDIX IH 
Symbols for quantities 

C =the mean-square-amplitude matrix 
T =the translation tensor 
L =  the libration tensor 
S =the correlation tensor with trace (S)=0 

S(K) = the correlation tensor whose trace is equal to 
3K. 

SJ(K)=S~+K; S~(K)=S~ for ( i#j)  

where SJ (i,j= 1,2, 3) are the components of S. 

C66(K)=the matrix [ T ST(K)] 
L--/ 

where ST(K) denotes the transpose of S(K) 
Aij(K) = the cofactor of {C66(K)}Ij i,j= 1 ,2 , . . . ,  6 
C44(K)=the matrix which arises from C66(K) by 

deleting the fifth and sixth rows and columns 
Css(K)=the matrix which arises from C66(K) by 

deleting the 6th row and column 
Ax= T n, A2=det [TlXT12] . . . .  ,A6(K ) =det  [C66(K)] 

~T12T 22] 
=the sequence of principal minor determi- 

nants of the matrix C66(K) 
(E~)=the equation A~(K)=0 (i=4,5,6) 

~KI_< ~K2. •. < ~Kj = the real roots of the equation 
(E,) ( i=4,5,  6). 
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